Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women.

Science (New York, N.Y.). 2021;372(6547):1224-1229

Plain language summary

Nicotinamide adenine dinucleotide (NAD+) is a co-substrate for NAD+-consuming enzymes that are essential in the regulation of diverse biological processes. The aim of this study was to determine the effects of nicotinamide mononucleotide (NMN) supplementation on i) body composition, ii) skeletal muscle insulin sensitivity, and insulin signalling; and iii) muscle NAD+ content and global gene expression profile. This study is a 10-week, randomized, placebo-controlled, double-blind trial in postmenopausal women with prediabetes who were overweight or obese. Twenty-five postmenopausal women with prediabetes were randomised to the placebo group (n=12) or the NMN group (n=13). Results show that 10 weeks of NMN supplementation increases muscle insulin signalling and muscle insulin sensitivity in postmenopausal women with prediabetes who are overweight or obese. Authors conclude that the precise mechanism(s) responsible for these metabolic effects and the potential metabolic benefits of NMN supplementation in other patient populations remain to be explored.

Abstract

In rodents, obesity and aging impair nicotinamide adenine dinucleotide (NAD+) biosynthesis, which contributes to metabolic dysfunction. Nicotinamide mononucleotide (NMN) availability is a rate-limiting factor in mammalian NAD+ biosynthesis. We conducted a 10-week, randomized, placebo-controlled, double-blind trial to evaluate the effect of NMN supplementation on metabolic function in postmenopausal women with prediabetes who were overweight or obese. Insulin-stimulated glucose disposal, assessed by using the hyperinsulinemic-euglycemic clamp, and skeletal muscle insulin signaling [phosphorylation of protein kinase AKT and mechanistic target of rapamycin (mTOR)] increased after NMN supplementation but did not change after placebo treatment. NMN supplementation up-regulated the expression of platelet-derived growth factor receptor β and other genes related to muscle remodeling. These results demonstrate that NMN increases muscle insulin sensitivity, insulin signaling, and remodeling in women with prediabetes who are overweight or obese (clinicaltrial.gov NCT03151239).

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal ; Structural
Environmental Inputs : Diet ; Nutrients
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Tissue biopsy ; Imaging

Methodological quality

Jadad score : 4
Allocation concealment : Yes

Metadata